SEED4D_RGB_HeaderBild.jpg
TRUCE-AV:

Multimodal dataset for Trust and Comfort Estimation

in Autonomous Vehicles

Aditi Bhalla,  Christian Hellert,  Enkelejda Kasneci, Nastassja Becker, Continental Automotive Technologies GmbH, Technical University of Munich

Models.png

Introduction

TRUCE-AV is a state-of-the-art multimodal benchmark dataset for trust and comfort estimation in autonomous vehicles.  Understanding and estimating driver trust and comfort are essential for the safety and widespread acceptance of autonomous vehicles. Existing works analyze user trust and comfort separately, with limited real-time assessment and insufficient multimodal data.

Our dataset has the following key features:
  

  • Real-time event-specific trust votes and continuous comfort ratings from 31 participants during a simulator-based fully autonomous driving.
  • Two driving sessions with diverse scenarios that reflect real-world driving events.
  • Concurrent data recordings of physiological signals, such as heart rate, gaze, and emotions, along with environmental data, such as vehicle speed, nearby vehicle positions, and velocity, and weather conditions.
      

Our dataset enables the development of adaptive AV systems capable of dynamically responding to user trust and comfort levels non-invasively, ultimately enhancing safety, user experience, and human-centered vehicle design.

Dataset

The data collected from multiple sensors is synchornised and combined into one file per participant per drive. Various events reflecting real-world driving scenarios were administered throughout both the drives to trigger physiological reactions.

  

If you have any questions regarding the dataset please contact:  Aditi Bhalla

Drive-01

Consisted of 8 driving events in a 11-12 minutes drives:

Drive-02

Consisted of 7 driving events in a 11-12 minutes drives:

Event-1

fahrt1_scenario1_zebrastreifen_h264
0:19

Event-1

fahrt2_scenario1_ball_h264
0:19

Event-2

fahrt1_scenario2_shortcut_h264
0:9

Event-2

fahrt2_scenario2_motorrad_h264
0:31

Event-3

fahrt1_scenario3_senke_h264
0:17

Event-3

fahrt2_scenario3_lustiger-podcast_h264
1:46

Event-4

fahrt1_scenario4_lkw-schneidet_h264
0:15

Event-4

fahrt2_scenario4_lkw_h264
0:26

Event-5

fahrt1_scenario5_wildwechsel_h264
0:24

Event-5

fahrt2_scenario5_nebel_h264
1:24

Event-6

fahrt1_scenario6_tunnel_h264
1:43

Event-6

fahrt2_scenario6_laermschutzwand-podcast_h264
2:17

Event-7

fahrt1_scenario7_krankenwagen_h264
0:43

Event-7

fahrt2_scenario7_trauriger-podcast_h264
1:21

Event-8

fahrt1_scenario8_deadlock_h264
1:3

Results

To demonstrate the utility of our dataset, we evaluated various machine learning models for trust and comfort estimation using physiological data. Our analysis showed that tree-based models like Random Forest and XGBoost and non-linear models such as KNN and MLP regressor achieved the best performance for trust classification and comfort regression.

Trust Classification

CategoryModelAccuracy (Mean)     F1-score (Mean)     Precision (Mean)     Recall (Mean)
Linear models      Logistic Regression26.06%     10.24%     26.82%     12.67%
  LinearSVC25.98%     9.29%     15.98%         12.34%
  Ridge classifier25.98%     9.27%     15.66%     12.34%
  SGD classifier20.58%     9.50%     12.22%     11.58%
Tree-based models  

  

  

  

  Random Forest

  

  

  

94.42%

  

  

  

     93.73%

  

  

  

     96.18%

  

  

  

     91.61%

  HistGradient Boosting76.92%         76.34%     79.76%     73.63%
  XGBoost82.64%     83.49%     86.72%     80.83%
  LightGBM76.12%     76.46%         79.63%     73.91%

Nonlinear/other models

  

  KNN78.83%     74.27%     72.11%     77.49%
  MLP classifier51.68%     45.56%     46.48%     45.42%

Comfort Regression

CategoryModel     R² (Mean)     MAE (Mean)     RMSE (Mean)
Linear models     Linear regression     0.0106     0.0451     0.1072
     Ridge regression     0.0107     0.0451         0.1072
Tree-based models    

     

  

     Random Forest

     

  

     0.1633

     

  

     0.0404

     

  

     0.0985

     Gradient Boosting     0.0781     0.0429     0.1034
     XGBoost     0.1480       0.0414     0.0994
Nonlinear models

     

     SVR (RBF Kernel)

     

     0.1452

  

      0.0716        

  

     0.0996

     MLP Regressor     0.1714     0.0536     0.0981

BibTeX

We welcome submissions. If you use the dataset please cite the following publication.

@misc{bhalla2025truceavmultimodaldatasettrust,
                title={TRUCE-AV: A Multimodal dataset for Trust and Comfort Estimation in Autonomous Vehicles},
                author={Aditi Bhalla and Christian Hellert and Enkelejda Kasneci and Nastassja Becker},
                year={2025},
                eprint={2508.17880},
                archivePrefix={arXiv},
                primaryClass={cs.HC},
                url={https://arxiv.org/abs/2508.17880},
}